Extensions 1→N→G→Q→1 with N=C23⋊C4 and Q=S3

Direct product G=N×Q with N=C23⋊C4 and Q=S3
dρLabelID
S3×C23⋊C4248+S3xC2^3:C4192,302

Semidirect products G=N:Q with N=C23⋊C4 and Q=S3
extensionφ:Q→Out NdρLabelID
C23⋊C41S3 = C3⋊C2≀C4φ: S3/C3C2 ⊆ Out C23⋊C4248+C2^3:C4:1S3192,30
C23⋊C42S3 = C23.2D12φ: S3/C3C2 ⊆ Out C23⋊C4248+C2^3:C4:2S3192,33
C23⋊C43S3 = C23⋊D12φ: S3/C3C2 ⊆ Out C23⋊C4248+C2^3:C4:3S3192,300
C23⋊C44S3 = C23.5D12φ: S3/C3C2 ⊆ Out C23⋊C4488-C2^3:C4:4S3192,301
C23⋊C45S3 = C23⋊C45S3φ: trivial image488-C2^3:C4:5S3192,299

Non-split extensions G=N.Q with N=C23⋊C4 and Q=S3
extensionφ:Q→Out NdρLabelID
C23⋊C4.1S3 = (C2×D4).D6φ: S3/C3C2 ⊆ Out C23⋊C4488-C2^3:C4.1S3192,31
C23⋊C4.2S3 = C23.D12φ: S3/C3C2 ⊆ Out C23⋊C4488-C2^3:C4.2S3192,32

׿
×
𝔽